Extensions 1→N→G→Q→1 with N=C2 and Q=C22×D19

Direct product G=N×Q with N=C2 and Q=C22×D19
dρLabelID
C23×D19152C2^3xD19304,41


Non-split extensions G=N.Q with N=C2 and Q=C22×D19
extensionφ:Q→Aut NdρLabelID
C2.1(C22×D19) = C2×C4×D19central extension (φ=1)152C2.1(C2^2xD19)304,28
C2.2(C22×D19) = C22×Dic19central extension (φ=1)304C2.2(C2^2xD19)304,35
C2.3(C22×D19) = C2×Dic38central stem extension (φ=1)304C2.3(C2^2xD19)304,27
C2.4(C22×D19) = C2×D76central stem extension (φ=1)152C2.4(C2^2xD19)304,29
C2.5(C22×D19) = D765C2central stem extension (φ=1)1522C2.5(C2^2xD19)304,30
C2.6(C22×D19) = D4×D19central stem extension (φ=1)764+C2.6(C2^2xD19)304,31
C2.7(C22×D19) = D42D19central stem extension (φ=1)1524-C2.7(C2^2xD19)304,32
C2.8(C22×D19) = Q8×D19central stem extension (φ=1)1524-C2.8(C2^2xD19)304,33
C2.9(C22×D19) = D76⋊C2central stem extension (φ=1)1524+C2.9(C2^2xD19)304,34
C2.10(C22×D19) = C2×C19⋊D4central stem extension (φ=1)152C2.10(C2^2xD19)304,36

׿
×
𝔽